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Kawasaki spin-exchange dynamics is generalized to study ordering dynamics in the three-
dimensional ferromagnetic Heisenberg model with a conserved vector order parameter. It is found, by
using conventional temperature-quenching Monte Carlo simulations, that the generalized Kawasaki
dynamics enables the system to reach thermodynamic equilibrium faster than the conventional
Kawasaki dynamics does at lower temperatures, while both are similar at higher temperatures.
With the generalized Kawasaki dynamics the domain size grows with time as t'/%, in agreement
with recent studies using Langevin-type dynamics. Evidence for the existence of spin waves is ob-
served in the Monte Carlo simulations for the generalized Kawasaki dynamics. Its relation to domain

growth is discussed.

PACS number(s): 64.60.Cn, 75.10.Hk, 75.40.Mg, 75.40.Gb

It is of current interest to understand the dynamics of
ordering phenomena in systems with continuous symme-
try [1-6]. Although there is no clear concept of a domain
boundary in systems with continuous symmetry, which is
crucial for understanding the ordering dynamics of sys-
tems with discrete symmetry [7,8], it was suggested that
the ordering process in such systems can still be charac-
terized by a correlation function C(r,t) which obeys the
scaling form [9]

C(r,t) = f(r/R(2)), (1)

assuming the existence of a scaling regime and a domi-
nant length scale R(t). R(t) is then an appropriate time-
dependent measure of the coherence length of the evolv-
ing order (“domain”). In the case of conserved order pa-
rameters, both renormalization group analysis [1,2] and
numerical studies [3,5], on the basis of Langevin equa-
tions, showed that R(t) ~ t™ with n = }, where the
growth exponent n is independent of temperature. Most
studies on the ordering dynamics of systems with contin-
uous symmetry were focused on phenomenological mod-
els with Langevin dynamics [1-5,9]. This may be because
of the convenience of this approach, believed to be valid
within our current understanding of late-stage ordering
dynamics. It is also believed that the growth exponent n
is determined by the nature of the conservation law for
order parameters, but not by other system properties,
such as the detailed dynamics by which systems approach
to thermodynamic equilibrium. For microscopic models,
however, the belief was formed by studying systems with
scalar order parameters, such as the Ising system, but its
validity has not been checked for systems with continu-
ous symmetry, such as the Heisenberg magnetic system.
Although a Monte Carlo study, based on statistical me-
chanical microscopic models, of the ordering dynamics
in nonconserved order parameter systems with continu-
ous symmetry was reported recently [6], so far, to our
knowledge there has been no such study in the case of
conserved order parameters.

In this paper, we report a Monte Carlo simulation
study, using the three-dimensional ferromagnetic Heisen-
berg model, on ordering dynamics in systems with a con-
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served vector order parameter. The order parameter can
be conserved in the Monte Carlo simulations by apply-
ing the spin-exchange dynamics that was introduced by
Kawasaki to the Ising model for studying binary alloys
[10]. In Kawasaki dynamics (KD), two neighboring spins
on the lattice are chosen and they are interchanged with
a probability dependent on the change in energy for the
interchange. The conventional Kawasaki dynamics not
only conserves the order parameter, defined as the av-
erage spin orientation, but also conserves the entire dis-
tribution of spin orientations. The ordering dynamics
in an Ising-like model can be studied by conventional
temperature-quenching Monte Carlo simulations [11,12],
in which a system is initiated at a very high temperature
and, therefore, has a flat distribution of spins. How-
ever, when one applies the method to the Heisenberg
model, it is not clear whether the system with KD would
ever evolve into its equilibrium state at low temperatures.
Therefore, we argue that it is necessary in principle for
Heisenberg magnetic systems to generalize the conven-
tional Kawasaki dynamics.

The three-dimensional ferromagnetic
model is defined by the Hamiltonian

Heisenberg

H=-J) S-S, (2)
(i,d)

where S; = (S, Syi,Sz:) is a classical spin vector of
unit length, and J > 0. The spin variables are arrayed
on a simple cubic lattice. The Heisenberg model has a
second-order phase transition from a paramagnetic phase
to a ferromagnetic phase at kg7./J = 1.44 [13]. The or-
der parameter of the Heisenberg model can be defined as
M = L33, S;, a macroscopic magnetic moment spec-
ified by a length (the magnetization) and a direction in
space, where L2 is the number of spins in a system of
finite size L. The spins in the Heisenberg model do not
correspond to different species, so KD is not the most
natural way to conserve the order parameter. If one re-
moves the constraint on the direction of each spin in KD,
what is the simplest dynamics? In the Heisenberg model,
each spin S; has two degrees of freedom because of the
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fixed length of the spin; i.e., |S;|=1. So there are four de-
grees of freedom for a pair of such spins. If a pair of spins,
S; and S, are changed to a new pair of spins, S} and S/,
there are three constraints on the degrees of freedom of
the pair of spins, namely S; +S; = S} + S}, in order to
conserve the vecter order parameter M. The only one
degree of freedom left is a rotation around the direction
determined by the vector, n;; = S; + S;. It is obvious
that such a rotation changes neither the value nor the
direction of n;;; therefore, no change in the vector order
parameter M occurs. Such a rotation, however, is not
trivial in Monte Carlo simulations because it can change
the directions of S; and S;, respectively. A generalized
Kawasaki dynamics (GKD) can then be described as fol-
lows. Choosing randomly a pair of the nearest-neighbor
spins each time, one rotates them uniformly around the
direction determined by their vector sum with a random
angle, ¢, between 0° and 360° instead of exchanging their
spatial positions. In fact, KD is a special case of the GKD
with ¢ = 180° in the Heisenberg model.

We studied the ordering dynamics in the Heisenberg
model using conventional temperature-quenching Monte
Carlo simulations [11,12]. Although the stochastic pro-
cesses bring the quenched system towards thermody-
namic equilibrium in Monte Carlo simulations, they may
not correspond to the real dynamics in the system. How-
ever, the dynamical interpretation of Monte Carlo simu-
lation has been successfully applied to studying the or-
dering dynamics in systems with discrete symmetry [14].
The Heisenberg spin system, on simple cubic lattices sub-
ject to periodic boundary conditions, was initiated in a
highly disordered phase (T' ~ co) and instantly quenched
to a temperature below the transition temperature, 7.
Therefore, M = 0 in our quenching simulations. Only
five quenchings with different initial configurations were
carried out for each temperature because of the difficulty
in simulating a system with continuous variables. For-
tunately, for a system with continuous symmetry, the
results from each individual quench are very close, prob-
ably due to the large degree of randomness in the initial
configuration of the system [6]. Since there is no domain
in the usual sense in the system, the ordering was moni-
tored by calculating the time-dependent structure factor
S(g,t) which is the Fourier transform of the correlation
function C(r,t) in Eq. (1). By assuming translational
invariance, the spherically averaged structure factor in
three dimensions L3 can be obtained as

)

> (o

n< n
S(g,t) = an<|a|<gni1

Z Sl’-‘eiq.ri
> n

an<|a|<gn41

(3)

where q = %(li—}—mj—}—nﬁ), ¢n = 3™, and ¢ = |q|, with
l,m,n = 0,1,2,.... As measures of the linear domain
size, the length scales were derived from the moments of
S(q,t) as follows:
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Zlqms(q’t) —1/m
km (t) = (—‘*Z,S(q ) ) , (4)

q

and

3728 (q,1)

Kit)= %+ —
“ > 'a5(q,t),

(5)

where the primed sums in Egs. (4) and (5) are restricted
by an ultraviolet cutoff.

Figure 1 shows the evolution of the internal energy,
E(t), in time, measured in the Monte Carlo steps per
lattice site (MCS/S), as obtained from the quench from
the isotropic, disordered phase to two different tempera-
tures in the ordered, ferromagnetic phase of the Heisen-
berg spin system. Results for both GKD and KD are
shown for each temperature. They are not distinguish-
able at the higher temperature. However, at the lower
temperature, it is clearly shown that the system reaches
thermodynamic equilibrium faster by GKD than by KD.
To see the evolution of energy in more detail, we have in-
vestigated the distribution in the angle between nearest-
neighbor spin pairs at different moments after quenching.
The angle §;; between nearest-neighbor spin pairs S; and
S; is defined by cosd;; = S; - S;. The distribution of é,;,
n(8), over all nearest-neighbor spin pairs within the in-
tervals of §;; is then calculated. In Fig. 2 are shown the
distributions for both GKD and KD at several selected
times in the period from 102 to 10* MCS/S at the lower
temperature. The peak of the distribution gets sharper
and shifts to the small angle side when the ordering of the
system develops with time. The initial distribution, for a
configuration of spins that distribute uniformly in the ori-
entational space, is very close to what one expects for the
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FIG. 1. The internal energy per spin E(t) in units of J, as
a function of time ¢, in MCS/S, obtained in quenches of the
Heisenberg spin system from the isotropic, disordered phase
to the two temperatures, 7' = 0.77. and 0.187, in the or-
dered, ferromagnetic phase. All the data were obtained from
a system of 28% spins except those for GKD, shown as [o],
which were obtained from a system of 64% spins.
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FIG. 2. The distribution in the angle between near-
est-neighbor spins pairs, n(8), at T = 0.18T. and at ¢ = 10?,
10, and 10* MCS/S for both GKD (lines) and KD (open
symbols). The initial distribution, shown as [+], was gener-
ated by a configuration of spins which distribute uniformly in
the orientational space. All the data were obtained from a
system of 323 spins.

spin system at very high temperatures, i.e., n(4) ~ sind.
As shown in Fig. 2, the distributions for GKD at ¢t = 102
and 102 nearly overlap those for KD at t = 10® and 104,
respectively. It is consistent with the results presented in
Fig. 1 that the ordering develops about 10 times faster for
GKD than for KD at the lower temperature. However,
the distributions for GKD and KD at the higher temper-
ature are always very similar at any time. Three domain
length scales derived from the moments of the structure
factor for GKD are illustrated in Fig. 3. At the late stage
the data for kq(t), k2(t), and K (t), obtained according to
Egs. (4) and (5), conform clearly to a power law. In fact,
km:l,z(t) ~ t—0.26;t0.01 and K(t) ~ t_0'25i0'01, where the
exponents were obtained from the best fits to the data
at the late stage. They are consistent with each other

18 T T T T T
15 lok®
Ak, ®
12 | |OK®
e
o 09 -
S 0 0000
06
03 2 S
w85 : : i .
s 6 7 3 9 10 11
Int

FIG. 3. Log-log plot of the length scales, k1(t), k2(t), and
K(t), in Eq. (4) and Eq. (5) vs time ¢ (in units of MCS/S)
for quenches from the disordered phase to the temperature,
T = 0.18T,, in the ordered phase. The data were obtained
from a system of 64> spins for GKD. The solid straight line,
the best fitting to the data of K(t) at the late stage, has the
slope as indicated.
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within the statistical errors, although the result from the
data of K (t) is generally expected to be more accurate
[15]. The same length scales were also calculated for the
system at higher temperature and almost the same power
law was observed. It indicates that the domain size R(t),
characterized by the length scales, grows as R(t) ~ t"
with n & % at the late stage, and the growth exponent
is, within statistical errors, independent of temperature
in contrast to the observations made in the Monte Carlo
study in the case of the nonconserved order parameter [6].
This result is consistent with those obtained from stud-
ies on the Langevin dynamics [1,3]. The domain growth
of KD is similar to that of GKD at the higher tempera-
ture, but the former is much slower than the latter at the
lower temperature and even has not reached the scaling
regime before finite size effects show up. The difference
between GKD and KD in a quenching experiment can
also be observed in the orientational distribution of the
spins. In Fig. 4 is shown the orientational distribution
of the spins before and after a quenching to T' = 0.187T..
The difference between GKD and KD in the orientational
distribution is very obvious. In a quench the orienta-
tional distribution of the spins for KD does not change
since only exchanges of the spatial positions of spins are
involved. However, the orientational distribution of the
spins for GKD changes in such a way that the vector
order parameter M can keep the initial value, namely,
M = 0, in the quench. A certain order appears in the
distribution for GKD in correspondence with establish-
ing spin waves, the equilibrium state of the Heisenberg
model. The spin wave with wavelength ¢ ~ 7 instead
of ¢ =~ 2w, as shown in Fig. 4, seems to be always ob-
served in different runs although the understanding of
the observation is still lacking.
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FIG. 4. Distributions in the number of spins with the angle
¢, N(¢), both for GKD (o) and for KD (*), at t = 10° MCS/S
after a quench from the disordered phase to T' = 0.18T, in the
ordered phase. N(¢) is the histogram of the number of spins,
within the intervals of ¢, summed over all 8, where ¢ and 6
are the angles used to describe the orientation of a spin; i.e.,
S = (sin @ cos ¢, sin @ sin ¢, cos f). The distribution for KD is
the same as the initial one generated by a random number
sequence which fluctuates about the average value indicated
by the line. The data were obtained from a system of 323
spins.
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The theoretical analysis made by Bray [1], in which
the growth with n = 211— is related to the existence of spin
waves in a system with continuous symmetry, can be used
to interpret our simulation results. In fact, our Monte
Carlo simulation data for GKD and KD seem to indicate
some links between domain growth and spin waves. Both
the growth exponent n =~ % and the evidence for building
up spin waves were observed in the simulations for GKD
at low temperature, but not in the simulations for KD
in the same situation. The dynamics proposed in this
paper (GKD) can effectively establish spin waves so that
the same growth law predicated by Bray [1] can be ob-
served at low temperatures. Therefore, from this point
of view, GKD may be more favorable than KD in real
situations. At higher temperatures, the spin waves are
less-well defined because of large thermal fluctuations, so
there is not much difference between GKD and KD. We
have also done the simulations for GKD for several differ-
ent systems up to 642 spins. No obvious finite size effect

was found for the growth exponent of n ~

L
e
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In summary, we present dynamics for the Heisenberg
model with a conserved vector order parameter. The
Monte Carlo simulation study on the microscopic model
with continuous symmetry shows that the dynamics en-
ables the system to reach thermodynamic equilibrium
faster than the Kawasaki dynamics does. Domain growth
with the exponent, n = %, was observed in our Monte
Carlo simulations, consistent with previous studies on
the Langevin equations. Evidence for spin waves was
found in the orientational distribution of the spins for
the dynamics in our Monte Carlo quenching simulations.
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